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a  b  s  t  r  a  c  t

The  possibilities  of  artificial  neural  networks  (ANNs)  “soft”  computing  to  evaluate  chemical  kinetic  data
have  been  studied.  In the  first  stage,  a  set  of  “standard”  kinetic  curves  with  known  parameters  (rate
constants  and/or  concentrations  of  the  reactants),  which  is  some  kind  of  “normalized  maps”,  is  prepared.
The  database  should  be built  according  to a suitable  experimental  design  (ED).  In  the  second  stage,  such
data  set  is  then  used  for  ANNs  “learning”.  Afterwards,  in  the  second  stage,  experimental  data  are  evaluated
and  parameters  of  “other”  kinetic  curves  are  computed  without  solving  anymore  the  system  of differential
equations.

The  combined  ED-ANNs  approach  has been  applied  to solve  several  kinetic  systems.  It was  also  demon-
rtificial  Neural networks
xperimental  design
ate  constants
ulticomponent analysis
ptimization

strated  that  using  ANNs,  the  optimization  of  complex  chemical  systems  can  be  achieved  even  not  knowing
or  determining  the  values  of  the  rate  constants.  Moreover,  the  solution  of  differential  equations  is  here
not  necessary,  as  well.  Using  ED  the  number  of experiments  can be  reduced  substantially.  Methodol-
ogy  of  ED-ANNs  applied  to multicomponent  analysis  shows  advantages  over  classical  methods  while  the
knowledge  of  kinetic  reactions  is not  needed.  ANNs  computation  in kinetics  is  robust  as  shown  evaluating
the  effect  of  experimental  errors  and  it is of  general  applicability.
. Introduction

The fundamental task in chemical kinetics is the determination
f (i) the number and kind of chemical species, (ii) the reaction
echanism, (iii) rate constant values and (iv) concentrations of the

pecies as a function of time. Such results form what is usually called
hard” kinetic model of the system. Once the mechanism is known,
he rate of the reaction can be expressed by differential equations
nd the values of rate constants are obtained by integration.

In  the last 50 years several computer programs, based on
eneral least-squares method, have been developed to manage
nd treat different types of chemical data. Pioneering contribu-
ion in chemical equilibria was given by Sillén with his family
f LETAGROP [1] programs. These programs and many others

eveloped since, such as modern HYPERQUAD [2] or OPIUM
http://web.natur.cuni.cz/∼kyvala/opium.html) for example, allow
o compute just stability constants. First computer program for

∗ Corresponding author at: Department of Chemistry, Faculty of Science, Masaryk
niversity,  Kampus Bohunice, Kamenice 5/A14, 625 00 Brno, Czech Republic.
el.: +420 549 492 698.
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039-9140/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
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© 2012 Elsevier B.V. All rights reserved.

kinetics was LETAGROP KINET developed by Sillén [3], later on mod-
ified [4], and many other programs based on general least squares
method for kinetics were developed since (SPECFIT [5], KILET [6]),
KINAGDC [7], etc.).

Nevertheless, computation in kinetics is faced with several dif-
ficulties. The behaviour of chemical kinetic systems is often highly
nonlinear and the determination of kinetic model may be failing
as consequence of undistinguishability and/or non-unique identi-
fiability [8]. Even in the case in which the mechanism is known
in detail, the analytic solution of differential equations can be
mathematically impossible [9]. Usually several experimental sim-
plifications are introduced and kinetic rate constant values are
estimated by numerical methods [9].

Hard approach seems to be a not efficient way to obtain infor-
mation of strictly practical use in problems of applied chemistry.
Another possibility is the so called “soft-modelling” or “model-free”
approach. The main advantage of “soft” methods is the possibility to
model the kinetic behaviour of complex chemical systems without
any a priori knowledge. Soft-modelling approach is often based on

powerful mathematical tools known as artificial neural networks
(ANNs).

It seems that the first evaluation of ANNs applicability in chem-
ical kinetics was given by Pérez-Bendito and Silva [10]. Several
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uthors applied ANNs to model real chemical systems, for example
n order to predict: (i) the behaviour of industrial reactors [11], (ii)
eaction rate values [12,13], (iii) rate constant values [14,15], (iv)
nalyte concentrations in multicomponent kinetic determinations
16–18] and (v) kinetics of drug release [19]. The results obtained
11–19] for specific systems show clearly the relevance of ANNs
pplications in this field. ANNs in combination with ED have also
een extensively used in capillary electrophoresis where kinetic
rocesses are also involved [20].

The aim of this work is to study applicability of ANNs in chem-
cal kinetics, to generalize ANNs use and to evaluate their power,
obustness but also limitations. In optimization involving kinetics
o study the role of experimental design and to give general guide-
ines for ANN applications in experimental practice of chemical
inetics.

. Theoretical aspects

.1.  General considerations

Chemical  systems are generally characterized by t physico-
hemical parameters, either microscopic as rate constants or
acroscopic as concentrations. The whole set of parameters may

e indicated by:

xr}r=1,2,...t (1)

ach  parameter xr is related to the values of all the others:

s = f (xj) (2)

here xs parameters are usually experimentally accessible. An
xample useful for our further discussion is given by the gener-
lized Lambert–Beer–Bouguer’s equation:

 = b

k∑
l=1

εici = f (ε1,ε2,...εk, c1,c2,...ck) (3)

here  εi and ci are the molar absorptivity and concentration value
f the i-th chemical species respectively.

Relationships among different sets of parameters can be too
omplex or some of them even unknown.

In chemical kinetics, concentration and absorbance values are
sually accessible by experimental measurements. We  can write:

 = f (k±1, k±2, ...k±j, t) (4)

 = g(c) = h(k±1, k±2, ...k±j, t) (5)

here  k±i are kinetic rate constants and t is the time.
According to hard-modelling approach, the analytical expres-

ion for f, g and h should be found. However, another way is to
pproximate such functions using soft-modelling. The result is an
pproximated description of the behaviour of the system with
espect to output parameter values. This is relevant for the purposes
f applied chemistry. As a powerful soft-modelling tool, artificial
eural networks are often used. They are able to accomplish func-
ion approximation at sufficient degree of accuracy [21].

.2.  Artificial neural networks

An  artificial neural network is the transposition of the brain
tructure into a simplified formal architecture in which a series
f units, called neurons, is organized into layers. The network is
ormed by linking each neuron of a layer to every neuron in the

ubsequent one as shown in Fig. 1.

The neural network uses sets of input and output parameter
alues usually written as row vectors. A couple of correspondent
nput and output row vectors is joined into a new vector called
Fig. 1. A general structure of ANN architecture with inputs, outputs and 2 hidden
layers for applications in kinetics.

“example curve” or simply “curve”. All the curves so obtained are
grouped in a “training matrix”. Data in each curve are values of xj
and xs parameters (Eq. (2)) which can be either experimental or
calculated.

We indicate xj as output and xs as input parameter respectively.
The first layer of the network contains neurons that receive input

data values from the rows of the training matrix. This information
is transmitted from the i-th neuron of a layer to the j-th neuron
of the subsequent one after weighing with a weight wij. Layers
following the input one are called “hidden”. In each neuron of a
hidden layer the weighed inputs coming from the previous one are
summed each other and added to a bias. The result is then trans-
formed by means of a suitable mathematical function to obtain an
output called “activation” of the neuron. The activation is trans-
ferred to neurons in the next layer after another weighing step. In
the last layer, output parameter values are estimated by means of
a suitable transformation function.

The described process is called “learning” and it is repeated
iteratively. After each epoch the estimated values (o∗

ik
) of output

parameters are compared with those (oik) of the corresponding
curve in the training matrix and the value of RMS is calculated as:

RMS  =

√√√√√
m∑

i=1

n∑
k=1

(o∗
ik

− oik)2

m × n
(6)

where  m and n are the number of rows of the training matrix and
the number of output parameters respectively.

During learning, weight values are changed according to suit-
able algorithms in order to decrease the value of RMS. In our study
the back-propagation algorithm was used. The learning is consid-
ered complete when the lowest values of RMS  is reached.

For  a given system studied, the network architecture must be
optimized. While the number of input and output neurons is given
by data used, the optimal number of hidden layers and that of their
neurons is found using the criteria of the lowest RMS. For each hid-
den layer, a graph of RMS  values vs. the number q of neurons (Fig. 2)
shows that at first, increasing the value of q, the RMS decreases
rapidly, but after, a poor improvement is obtained. The optimal
number of neurons in that hidden layer is given by the point of
intersection of the two  branches of the graph. For a network with i
neurons in the input layer, j in the hidden and k in the output ones,
the architecture can be written in annotation as (i, j, k).
After  training, the “verification” step must be performed using
“new” examples. The cross-validation or leave-one-out method
consists in the exclusion from the training step of one curve
of the training matrix. The excluded curve is then used as
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[B] = k1[A] − k2[B] (13)
ig. 2. Optimization of the number of hidden neurons in the first hidden layer.

erification example. Other curves may  be supplied by new data,
ither experimental or calculated. Each curve corresponds to a
oint on the response surface which is approximated by ANNs.
etter definition of the response surface is usually achieved
y increasing the number of points. When expensive or time-
onsuming tasks must be performed to obtain experimental data,
nother approach should be used.

.3. Experimental design

Experimental  design has been extensively treated in textbooks
bout chemometrics [22,23]; for this, here we will give only some
eneral remarks.

The  area bounded by both lowest and highest values of the
elected output parameters (xj) is called working space.

Experimental design is a tool to select points within the working
pace according to a well-distribution in order to extract the max-
mum amount of information. The aim of the experimental design
s to maximize the ratio:

Information  obtained
Number of points

(7)

As  stated in the Section 2.1, n parameters can be selected as out-
uts and the optimal n-dimensional experimental design is found.
ere we indicate these parameters as “factors”. The values assumed
y the j-th factor in the experimental design are called “levels”.
he coordinates of the i-th point (i = 1, 2,. . .m) of the experimental
esign are given by the vector:

ai1 ai2 ... aij ... ain ) (8)

n  which the element aij is the level of the xj factor. According to Eq.
2), from aij values of xj, bik (k = 1, 2,. . .p) values of xs are measured
or calculated). In this way the M = m × (n + p) matrix is obtained:

 =

⎛
⎜⎜⎝

b11 ... b1k ... b1p a11 ... a1j ... a1n

... ... ... ... ... ... ... ... ... ...
bi1 ... bik ... bip ai1 ... aij ... ain

... ... ...  ... ... ... ... ... ... ...
bm1 ... bmk ... bmp am1 ... amj ... amn

⎞
⎟⎟⎠ (9)
ach  row of the matrix M represents a “curve”.
Random selection of other points within the working space

llows obtaining new curves to be used for the verification step.
Fig. 3. Concentration profiles for A, B and C.

3. Computational aspects

3.1.  Software

ANNs computation was performed using Trajan Neural Network
Simulator, Release 3.0 D (Trajan Software Ltd. 1996–1998, UK).
Some calculations were also done using STATISTICA V. 6 (StatSoft,
Inc., USA). All computations were performed on a standard PC com-
puter with Microsoft Windows Professional XP 2000 as operating
system.

4. Results and discussion

The  possibility of the use of ANNs in various kinetic systems will
be examined while the following items are to be considered:

1.  kinetic data modelling;
2. role  of experimental design and data properties on modelling

and  estimation by ANNs.

4.1. Case 1: two consecutive reactions

Thermal decomposition of acetone:

C3H6O → C2H2O + CH4 → 1
2

C2H4 + CO + CH4 (10)

is a common industrial process that takes place by two consec-
utive reactions. In the process some species are also formed as
by-products (CH4, CO). Referring to species that really undergo
chemical transformation, the process can be simplified by the
scheme:

A
k1−→B

k2−→C  (11)

In Fig. 3 one of the concentration curve profile for the three
species A, B, C, is shown. The scheme given by Eq. (11) is mathe-
matically described in matrix notation [24] as:

d

dt

(
[A]
[B]
[C]

)
=
(−k1 0 0

k1 −k2 0
0 k2 0

) (
[A]
[B]
[C]

)
(12)

When [A]0 = 1 mol  L−1 and [B]0 = [C]0 = 0, the system of differential
equations obtained is given by:

d

dt
[A] = −k1[A]
dt
d

dt
[C] = k2[B]
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The kinetic constant’s working space was within the inter-
val 0.05 ≤ kj ≤ 0.1; moreover, the external values kj = 0.0375 and
kj = 0.1125 were also included in the experimental design. The ED
Fig. 4. A 22 experimental design with centre point.

and, by integration:

[A] = e−k1t

[B] = k1

k2 − k1
(e−k1t − e−k2t)

[C]  = [A]0 − [A] − [B]

(14)

The kinetic constant’s working space was within the interval
.0375 ≤ kj ≤ 0.1125. As stated in the Section 2, the training matrix
hould be obtained using ED on the chosen working space. As first,
2 ED with centre point (Fig. 4) was applied. The coordinates of
ach point of the ED are two values of k1 and k2. Using these values
he concentrations for each species were calculated by means of
xpressions in Eq. (14) and were used as input parameters, whence
1 and k2 values were used as outputs. In this way the rows of the
raining matrix M (Eq. (9)) are of the form:

[A]t0
[A]t1

... [A]tf
[B]t0

[B]t1
...

[B]tf
[C]t0

[C]t1
... [C]tf

k1 k2

)
(15)

The optimal network architecture was found using the criteria
f minimum value of RMS  (Fig. 2) to minimize the risk of overtrain-
ng. Thus, the architecture obtained was (300,3,2). No performance
mprovements were obtained with architectures with two  hidden
ayers. Under these conditions, the network training process was
uccessful and acceptable results were obtained for both k1 and k2.

When a set of kinetic curves randomly chosen within the work-
ng space is presented to the network for the verification process
o correlation was found between estimated and theoretical kj
alues. It means that the network, with the chosen experimental
esign, is able to model the system that is to “approximate” the
nknown relationship between inputs and outputs. However, this

s not enough to reach acceptable estimation of kj values for an
nknown set of data. This is a consequence of a too “simple” exper-

mental design. Evidently more points are needed to give to the
etwork sufficient information for a better estimation. The optimal
xperimental design found is shown in Fig. 5. The external values
j = 0.03125 and kj = 0.11875 were also included.

With this experimental design it was found that the optimal net-
ork architecture was (300,8,2). Acceptable results were obtained

oth for modelling and for verification. The results for the k1 veri-
cation carried out on a set of unknown kinetic curves are shown

n Fig. 6 and analogous results were obtained for k2.

.1.1.  Sensitivity analysis

The  proposed ED-ANNs approach allows the acceptable estima-

ion of k1 and k2 values if the concentration profiles of all the species
re used as input data. Sometimes some of the concentration values
ight not be experimentally accessible. For this reason, sensitivity
Fig. 5. A 42-points experimental design.

analysis was performed to follow the effect of parameters on the
performance of the model.

1.  Concentration values of the species A only were found not suffi-
cient  to build an acceptable model.

2.  The concentration profile for the species C is affected by the well
known  slow-fast ambiguity that consists in the practical undis-
tinguishability of k1 and k2 values for time courses data [6]. In
agreement  with this, we have found that using as input only the
concentration  values for the species C, the predicted values of k1
and k2 for a given curve were equal to the average value of k1
and k2 for that curve in the training matrix.

3.  Using as input the time courses data only for the intermediate
species B, the values of both k1 and k2 were estimated with the
same  accuracy as by using the concentration profiles for all the
species.

4.2. Case 2: cyclic reaction pathways

As an example of simple cyclic model for the evaluation of ANNs
modelling ability, the following one was chosen:

A
k1−→B

k2−→C
k3−→A  (16)

Such kinetic paths are rather common in industrial chemical
processes, especially when catalytic steps are involved. The pro-
posed path does not take into account the formation of secondary
products.
Fig. 6. Case 1: agreement between theoretical and calculated k1 values for the ver-
ification set.
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Fig. 7. Central composite experimental design for three factors.

sed was a central composite one, as it is shown in Fig. 7. In this
ase the rows of the training matrix M (Eq. (9)) are of the form:

[A]t0
[A]t1

...[A]tf
[B]t0

[B]t1
...[B]tf

[C]t0
[C]t1

...[C]tf
k1k2k3) (17)

Using the same criteria as described above, the optimal neural
etwork architecture was found as (150,7,3). The linear regression
t gives the following results:

1,(est) = 0.985 · k1,(theor.) + 1.004 × 10−3, R = 0.998 (18)

2,(est) = 0.990 · k2,(theor.) + 7.040 × 10−4, R = 0.999 (19)

3,(est) = 0.999 · k3,(theor.) + 8.867 × 10−4, R = 0.999 (20)

here the k(est) means estimate and k(theor.) means theoretical. The
esults indicate clearly the ability of the chosen network to model
he proposed kinetic curves and to determine the values of kinetic
arameters. In order to verify the prediction ability of the trained
etwork, cross verification was performed. The agreement found is
xpressed by the following regression line equation:

1,(est) = 0.987 · k1,(theor.) + 0.0001295, R = 0.998 (21)

or k2 and k3, similar agreement was found.

.3. Case 3: multicomponent kinetic analysis

The use of ANNs as a tool to perform spectrophotometric mul-
icomponent analysis will be evaluated. The system previously
escribed and evaluated using partial least squares method (PLS)
25] will be studied in order to compare the two approaches.

Let  us consider the mixture of two analytes M1 and M2 that are
eacting with an excess of reagent R to form P1 and P2 products;
he reaction scheme is given in Eq. (22).

R  + M1
k1−→P1

R + M2
k2−→P2

(22)

here k1 = 1 mol−1 L min−1 and k2 = 0.025 mol−1 L min−1. The
bsorbance is given by:

T = εRCR +
∑

i

[Mi]0

(
εMi

e−kMi
CRt + εPi

[1 − e−kPi
CRt]
)

(23)

For simplicity we consider M1 and P2 as the only absorbing
pecies, with εM1 = εP2 = 100 m2 mol−1 and then, Eq. (23) can be

educed to:

T = 100[M1]0(e−t + (1 − e−0.25t)) + 100[M2]0(e−t + (1 − e−0.25t))

(24)
Fig. 8. Case 3: a 5-levels experimental design.

Absorbance values were calculated at time intervals of 0.2 min
for a total time of 10 min. The optimized experimental design cho-
sen was formed by 17 points (Fig. 8). The selected range for the
initial concentration of analytes was  0.1–1 mM.

The  absorbance values (AT) were used as inputs and initial con-
centrations of M1 and M2 as outputs. The rows of the training matrix
M (Eq. (9)) are of the form:

( AT,t0 AT,t1 ...AT,tf
[M1]0 [M0] ) (25)

The optimal neural network architecture found was (51,4,2).
The training process gave acceptable results (RMS ≤ 10−3). In order
to verify the prediction power of ANNs, cross-validation was per-
formed. The results obtained are reported in Table 1. Moreover, a
set of ten new curves was  used as external test set; the following
regression equation expresses the agreement obtained for theoret-
ical an estimated [M1]0 values:

[M1]0,(est) = 1.011[M1]0,(theor.) + 7.9 × 10−3 (26)

Acceptable results were also obtained for [M2]0. The results
show clearly the ability of ANNs to model the chosen chemical sys-
tem and to estimate the initial concentrations of analytes with an
average error of about 0.4%. ED-ANNs approach is in acceptable
agreement with PLS treatment of data as previously reported [25].

The model provided by ANNs can be also used to estimate the
concentration of only one analyte without any knowledge about
the presence of other species or side interactions that may occur.
In fact, carrying out the training procedure with the same network,
ignoring [M2]0 values, we  obtained acceptable agreement for [M1]0
values, as expressed by the following regression equation:

[M1]0,(est) = 0.998[M1]0,(theor.) + 1.24 × 10−3 (27)

The estimation of [M1]0 values ignoring [M2]0 ones, was also
carried out on the ten curves used as external test; the agreement
obtained is shown in Fig. 9.

The results of ED-ANNs approach to multicomponent kinetic
analysis indicate that it is possible to take into account the effect of
interferences.

4.4. Case 4: optimization of reaction conditions
Here we  consider a chemical process studied and nicely com-
mented by Leardi [26] for which no hard model is available. In this
case the optimal values for the temperature and for the time of



F. Amato et al. / Talanta 93 (2012) 72– 78 77

Table  1
Cross-validation results (multicomponent kinetic analysis).

Correct [M1]0 Found [M1]0 Residual Correct [M2]0 Found [M2]0 Residual

0.550 0.5552 0.0520 1.000 0.9966 −0.0034
0.325 0.3185 −0.0065 0.325 0.3274 0.0024
0.100 0.1023 0.0230 0.100 0.1017 0.0017
0.775  0.7840 0.0090 0.775 0.7843 0.0093
0.550  0.5500 0.0000 0.550 0.5485 −0.0015
0.325  0.3223 −0.0027 0.775 0.7845 0.0095
0.325  0.3271 0.0027 
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The  kinetic data used in Sections 4.1–4.3 were affected only by
the truncation error. The evaluation of the behaviour of ANNs in the
elaboration of data affected by random errors will be given here. For
ig. 9. Case 3: agreement between “predicted” and “theoretical” [M1]0 values ignor-
ng [M2]0 values for ten test curves.

eaction are searched for in order to achieve the highest yield for
he final product.

Data  reported in Table 2 have been collected according to a 32

actorial design. A model for this system has been obtained [26] by
ultiple regression approach using the function:

 (x, y) = b1 + b2x + b3y + b4xy + b5x2 + b6y2 (28)

However, ED-ANNs combined approach may  be used as well.
he temperature (T) and the time of reaction (t) were selected as
nput whence the yield (Y%) was selected as output parameter. The
ows of the training matrix M (Eq. (9)) are of the form:

T  t Y% )  (29)

To train the network only 5 points of the former 32 factorial
esign were used. The optimal neural network architecture found

as (2,5,1).

In  the parameter’s working space, 153 points were selected
ccording to a suitable grid and, for each point; the value of the yield
as estimated using both approaches. The two  response surfaces

able 2
xperimental data for optimization of reaction conditions.

Temperature (◦C) Time of reaction (min) Yield (%)

40 20 20.6
40 40 44.9
40 60 51.0
60 20 39.9
60 40 55.1
60 60 52.1
80 20 43.0
80 40 49.1
80 60 37.0
0.550 0.5505 0.0005

obtained, together with their difference, are shown in Fig. 10. Resid-
ual analysis of the results obtained with both ANNs and multiple
regression models was performed. The mean value is equal to 0.30
(it is close to zero as it should be). Also, the standard deviation
(s = 3.3) is comparable with the accuracy of the yield values. In addi-
tion, ANNs approach allows to reduce the number of experimental
points needed to build the model.

From the data obtained with the multiple regression approach,
the maximum value of the yield is achieved for T = 60 ◦C and
t = 45 min. ANNs estimate T = 60 ◦C and t = 40 min as optimal reac-
tion conditions.

Using less experimental points than that required for the mul-
tiple regression, the ED-ANNs approach can model the system
giving also an acceptable estimate of the optimal conditions for
the reaction. This result is relevant especially for the optimization
of industrial processes for which the cost of each experiment must
also be considered.

Using  ED-ANNs combined approach the knowledge of the hard
model of the system in terms of reaction mechanism and rate
constant values can be completely avoided. The optimal reaction
conditions to achieve the highest yield may  be found without solv-
ing the system of differential equations. Moreover, soft-modelling
has another advantage with respect to hard-modelling approach.
Frequently, a change of the reaction conditions causes a change of
mechanism. However, using ANNs and experimental design, this
possibility is implicit in the model. The change of mechanism may
then be viewed as a supplementary factor not explicitly consid-
ered in the experimental design, but whose effects are taken into
account implicitly.

4.5.  Effect of random errors
Fig. 10. Case 4: response surfaces obtained with ANN and multiple regression
approach.
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Fig. 11. Effect of roundoff errors on the concentration profile curve.

his purpose random errors were introduced in the error-free data
f Case 1 (Section 4.1). It is well known that it is not possible to
enerate true random numbers [27]; therefore pseudo “random”
rrors were introduced by rounding the significant digits of the
ndependent variable values (concentrations) to the third, second
nd first decimal. The change in concentration profile is shown in
ig. 11.

The values of outputs (kj) were kept with 4 decimal significant
igits. Under this condition we reproduced the situation in which
ome parameters are measured with a different level of accuracy.
or the three levels of rounding examined, the neural network
as able to give acceptable modelling of the curves in the train-

ng matrix as for the error-free ones. It is evident that the neural
etwork is able to compensate for the presence of different levels
f roundoff errors.

The  prediction ability of the trained network so obtained was
valuated using 20 new curves. The data in this verification set
ere rounded as before. The results obtained are expressed by the

ollowing regression lines:

Rounding level: ±0.001

k1,(est.) = 0.981 × k1,(theor.) + 3.7 × 10−4 (30)

k2,(est.) = 0.961 × k2,(theor.) − 9.1 × 10−5 (31)

Rounding level: ±0.01

k1,(est.) = 0.954 × k1,(theor.) + 2.62 × 10−3 (32)

k2,(est.) = 0.910 × k2,(theor.) + 2.94 × 10−3 (33)

Rounding level: ±0.1

k1,(est.) = 0.60 × k1,(theor.) + 2.11 × 10−2 (34)

k2,(est.) = 0.62 × k2,(theor.) + 1.93 × 10−3 (35)

It follows from the results that ANNs are able to give acceptable

redictions for both rounding levels ±0.001 and ±0.01. These cal-
ulations clearly indicate that ANNs are able to predict the values of
utput parameters even from experimental data affected by rather
igh standard deviations.

[
[
[
[

93 (2012) 72– 78

5. Conclusions

(i) ANNs are able to model with sufficient precision any kind of
kinetic  curves.

(ii) Even if the performance of combined ED-ANNs approach was
demonstrated for consecutive and cyclic reaction paths, this
approach  can be used for data concerning whichever reaction
path.

iii)  ED-ANNs approach is also applicable to multicomponent
kinetic analysis without any knowledge about the chemical
reactions involved.

(iv) Optimization of chemical processes can be achieved by ANNs
without  knowing the kinetic behaviour of the system. More-
over,  the use of ED-ANNs combined approach allows reducing
the  number of experiments needed.

Concluding, the results are showing that ANNs are a suitable tool
to evaluate even complex and highly non-linear kinetic data.
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20] J. Havel, E.M. Peňa-Méndez, A. Rojas-Hernández, J.P. Doucet, A. Panaye, J. Chro-

matogr. A 793 (1998) 317–329.
21] M.  Leshno, V.Y. Lin, A. Pinkus, S. Schocken, Neural Netw. 6 (1993) 861–867.
22] D.L. Massart, B.G.M. Vandeginste, L. Buydens, S.D. Jong, P.J. Lewi, J. Smeyers-

Verbeke, Handbook of Chemometrics and Qualimetrics: Part A. Data Handling
in Science and Technology, vol. 20A, Elsevier Science, 1997.

23] R.G. Brereton, Chemometrics Data Analysis for the Laboratory and Chemical

Plant, vol. 8, Wiley, 2003.

24] M.N. Berberan-Santos, J.M.G. Martinho, J. Chem. Educ. 67 (1990) 375–379.
25] J. Havel, F. Jiménez, R.D. Bautista, J.J. León, Analyst 118 (1993) 1355–1360.
26] R. Leardi, Anal. Chim. Acta 652 (2009) 161–172.
27]  P. Hellekalek, Math. Comput. Simulat. 46 (1998) 485–505.


	Artificial neural networks combined with experimental design: A “soft” approach for chemical kinetics
	1 Introduction
	2 Theoretical aspects
	2.1 General considerations
	2.2 Artificial neural networks
	2.3 Experimental design

	3 Computational aspects
	3.1 Software

	4 Results and discussion
	4.1 Case 1: two consecutive reactions
	4.1.1 Sensitivity analysis

	4.2 Case 2: cyclic reaction pathways
	4.3 Case 3: multicomponent kinetic analysis
	4.4 Case 4: optimization of reaction conditions
	4.5 Effect of random errors

	5 Conclusions
	Acknowledgements
	References


